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Abstract
This paper discusses the discount rate to be used in
projects aimed at preserving the environment. The model
has two different goods: one is the usual consumption
good whose production may increase exponentially, and
the other is an environmental good whose quality remains
limited. The stylized world we describe is fully determined
by four parameters, reflecting basic preferences, “ecolog-
ical” and intergenerational concerns, and feasibility con-
straints. We define an ecological discount rate and exam-
ine its connections with the usual interest rate and the
optimized growth rate. We discuss, in this simple world, dif-
ferent forms of the precautionary principle.

1. Introduction

Environmentalists have often dismissed the economists’ approach of envi-
ronmental problems, more especially when long-term issues are at stake. On
the one hand, what may be called “ecological intuition” puts high priority
on the long-run preservation of the environment. On the other hand, the
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cost-benefit analysis promoted from economic reasoning calls for the use
of discount rates that apparently lead to dismiss the long-run concerns (see
Arrow, Chenery, Minhas, and Solow 1961). The climate issue is the most re-
cent avatar of the clash between “ecological intuition” and “economic rea-
son” (see, e.g., Dasgupta 2004; Heal 2003; Lecocq and Hourcade 2001): in
sharp contrast with most environmentalists and many climatologists’ sen-
sitivity, the computations based on Nordhaus (1993) and Nordhaus and
Boyer (2000) suggest lenient climate policies. And although Nordhaus has
been cautious in warning against misinterpretations, some of his less cau-
tious readers (Lomborg 2001) claim that their fight against climate policies
proceeds from “economic reason.” The Stern review (Stern et al. 2006) has
changed the tone of the debate significantly. It is clear that Stern’s views
of “economic reason” and the subsequent cost-benefit analysis were initially
not broadly accepted in the economic profession, but it seems that they are
now gaining some acceptance (for comments and response to comments see
Weitzman 2007 and Stern 2008).

This paper attempts to retackle the clear antagonism between the two
sides from a simple model that has been recurrently used in the economists’
debate (see Heal 1998), but the relevance of which in the present debate
has been recently more systematically stressed by Guesnerie (2004), Traeger
(2012), Hoel and Sterner (2007), and Sterner and Persson (2008). The
model assumes that there are two goods at each period: the environment
(a nonmarket good) and standard aggregate consumption. The first one is
supposed to be available in finite quantity when the second one is allowed to
grow forever. The opposition between a finite level of environmental good
and an increasing level of consumption good echoes a core determinant
of the “ecological” sensitivity: sites, lands, seashores, and species are finitely
available on the planet. On the contrary, modern optimism, based on the
“economics” of past growth performance, leads to believe that consumption
of the so-called private goods may be multiplied without limit (see Aghion,
Howitt, Brant-Collett, and Garcia-Peñalosa 1998; Barro and Sala-i-Martı́n
2003).

We discuss the long-run cost-benefit analysis issues that arise within a
model that has indeed two goods, with the respective interpretations of ag-
gregate consumption and aggregate environmental quality that have just
been introduced. As emphasized in Guesnerie (2004), in such a setting, cost-
benefit analysis has to stress, not only the standard discount rates but also,
the “ecological” discount rate, the evolution of which reflects the relative price
of environment vis-à-vis the standard private good.1

The simple infinite horizon world under scrutiny is entirely described
by four parameters. The first parameter describes how substitutable are the
standard and environmental goods in producing welfare. Opinions on the

1 It is well known that in an n-commodity world, there are as many discount rates as there
are goods (see Malinvaud 1953 for a general appraisal of this question and Milleron, Gues-
nerie, and Crémieux 1978 for applications to standard problems of cost-benefit analysis).
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value of this parameter may differ and lead to oppose a “moderate” environ-
mentalist and a “radical” environmentalist. The second parameter is the clas-
sical elasticity of marginal utility which reflects the extent to which welfare
is subject to saturation, and which classically determines the intertemporal
“resistance to substitution.” The third parameter is a pure rate of time prefer-
ence which, in this setting, measures the degree of intergenerational altruism
of the agents. The last parameter will be an interest rate which, in the logic
of a simple endogenous growth context (of the AK type), indicates to which
extent one can transfer consumption between periods and generations.

Within this model, the research agenda is clear: we have to under-
stand how the parameters under consideration affect the trade-off between
present and future consumption, both for standard or “environmental” con-
sumption. As argued above, key dimensions of such trade-offs are captured
through the “ecological” discount rates. Indeed, such rates provide central in-
gredients to the cost-benefit analysis of actions aiming at preserving the fu-
ture environment. Our analysis can then focus on the assessment of what we
call environmental perpetuities, which provide a key information for the cost-
benefit analysis of actions aiming at avoiding “irreversible damage to the en-
vironment.” This leads us to examine and assess the logic of the precautionary
principle, which focuses attention on irreversible damage to the environment
in case of “scientific uncertainty.”

The paper proceeds as follows. Section 2 of the paper presents the set-
ting of the model and the role of the different parameters. We present the
basic concepts and introduce the “ecological discount rate” independently
of the growth model.

In Section 3, we introduce a two-good growth model à la Ramsey in which
the environmental good quality remains constant over time. Along with the
derivation of asymptotic results, the analysis allows to exhibit the time pattern
of both the optimal growth rates of private consumption and the “ecological
discount rates.” We are able to characterize yield curves in a way that allows us
to single out a simple lower bound for the social loss due to an “irreversible
damage to the environment,” or to put it in another way to help us to price
the so-called “environmental perpetuity.”

Section 4 focuses on various forms of precautionary principles. (Earlier
literature on the subject includes Gollier, Jullien, and Treich 2000.) We
consider an irreversible damage to the environment that will take place at
some later date and the effect of which on (present and future) welfare is
uncertain. We raise the question of the willingness to pay of the present
generation in order to avoid it. Indeed, the analysis in Section 2 provides
an answer to the same question, when there is no uncertainty on the welfare
effect of the damage. When, as considered in this section, the damage has an
uncertain impact on welfare, we stress first a “weak precautionary principle”:
it is reminiscent, for ecological discount rates, of Weitzman’s classical
argument (2001) on long-run standard discount rates. Second, we exhibit
a “strong precautionary principle,” which we view as the most striking result
of this paper. It tells us that the effort of the present generation should be
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based on a cost-benefit analysis that overweighs in a spectacular way the
probabilities of the events associated with bad environmental outcomes.

The connections of the paper with the literature are as follows. Models
with two goods include Heal (1998).2 The model of the paper is the one
considered in Guesnerie (2004), and the argument exploits the findings of
this paper. It also refers to some of the insights of Hoel and Sterner (2007),
Guéant, Lasry, and Zerbib (2007), and Sterner and Persson (2008), and the
extension of Troeger (2012). All these papers refer to the concept of “eco-
logical discount rates” emphasized in Guesnerie (2004), a concept that has
also been stressed in a somewhat more complex setting than ours, and with
a different focus, by Gollier (2010). Also, note that the importance of substi-
tutability, which we emphasize here, has been stressed earlier in Gerlagh and
Van der Zwann (2002).

Note that the views presented here on discounting and precaution have
a motivation closely connected to the one of Weitzman (2009). However,
our emphasis is on relative prices effects: even if we put emphasis on the
uncertainty that surrounds the long-run environmental issues and on the
weight to be put on the bad case, we do not stress “fat tails.”

2. Model and Preliminary Insights

2.1. Goods and Preferences

We are considering a world with two goods. Each of them has to be viewed
as an aggregate. The first one is the standard aggregate private consump-
tion of growth models. The second one is called the environmental good.
Its “quantity” provides an aggregate measure of “environmental quality” at a
given time. It may be viewed as an index reflecting biodiversity, the quality
of landscapes, nature and recreational spaces, the quality of climate, and the
availability of water.

We call xt the quantity of private goods available at period t, and
yt the level of environmental quality at the same period. Generation t ,
which lives at period t only, has ordinal preferences, represented by a
Constant Elasticity of Substitution (CES; see Arrow et al. 1961) utility

function: v(xt , yt ) = [x
σ−1
σ

t + y
σ−1
σ

t ]
σ

σ−1 .
However, the measurement of cardinal utility, on which intertemporal

judgments of welfare will be made, involves an isoelastic function: V (xt , yt ) =
1

1−η
v(xt , yt )1−η.
The above modeling calls for the following comments:

• Concerning v, we have to stress two points:

– The reader has noted that xt and yt appear with the same coefficient
in the function v. However, for a given generation, this is without

2 There is also a related literature, which considers, as second good, an exhaustible re-
source. For recent developments of this literature, see d’Autume and Schubert (2008).
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loss of generality since it is only a matter of unit in the measure-
ment of yt . Hence, giving the same weight to the private good index
and the environmental quality index is a matter of notational con-
venience. However, leaving these weights constant across time or at
least bounding them to be nonvanishing is a substantive assumption.
It implies, in particular, that the concern for any of the two goods
does not shrink. The present assumption on the symmetric role of x
and y is intended to reflect the fact that we “only have one planet,”
the preservation of which is not, and will never be, a point of minor
concern for its inhabitants, whatever their ability to produce large
quantities of new private goods. Even, if the specific modeling is
crude, this point seems well taken for our purpose in the sense that
we do not deny a priori the soundness of “ecological intuition.”

– v is a CES utility function, where σ is the elasticity of substitution be-
tween the two goods.3 It describes a specific pattern of substitution:
when the ratio environmental quantity (here quality) over private
good quantity decreases by 1% the marginal willingness to pay for
the environmental good, or its implicit price, increases by 1/σ%.

This setting with constant elasticity of substitution allows to write
easily what may be called the Green NDP. If we, indeed, regard the
consumption good as the numéraire, then the number y( x

y )
1
σ is what

we call Green NDP. Note that it grows indefinitely whenever x grows
indefinitely, if, as we suppose here, y remains finite. Also, note that
the ratio of Green NDP over standard NDP is (independent of any
numéraire) ρ = ( y

x )1− 1
σ and the ratio of green NDP to total NDP is

λ = ρ

1+ρ
.

• Let us come to V . The marginal utility of a “util” of v takes the form
v−η: when v increases by 1%, marginal cardinal utility decreases by η%.
This coefficient 1

η
has the standard interpretation of an intertemporal

elasticity of substitution.

2.2. Social Welfare

Social welfare is evaluated as the sum of generational utilities. In line with
the argument of Koopmans, we adopt the standard utilitarian criterion:

1
1 − η

+∞∑
t=0

e −δt v(xt , yt )1−η.

Two comments can be made:

• The coefficient δ is a rate of pure time preference. Within the norma-
tive viewpoint which we mainly stress here, the fact that this coefficient

3 In what follows, we will ignore the Cobb-Douglas σ = 1 because it provides specific
results.
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is positive has been criticized, for example, by Ramsey who claims that
it is “ethically indefensible and arises merely from the weakness of the
imagination” or Harrod who views it as a “polite expression for rapac-
ity and the conquest of reason by passion.” Reconciling these feelings
with Koopmanns’s argument leads us, however, to accept a positive
and small δ. The smaller the δ, the more “ethical considerations be-
come preponderant.” Along the “ethical” line of argument, it has been
argued that the number might be viewed as the probability of survival
of the planet.

• We may view the coefficient η as a purely descriptive one, reflecting
intertemporal substitution, or as a partly normative coefficient, re-
flecting the desirability of income redistribution across generations.
This is the more frequent interpretation we stress in the paper: a low
(respectively, high) η reflects little (respectively, a lot of) concern for
intergenerational equality.

At this stage, something more can be said on the philosophy of the
approach taken here. We have adopted a stylized description of the trade-
off between environmental quality and private consumption. We recognize
that the modeling of the trade-off is crude. However, if the degree of substi-
tutability between standard consumption good and environment is fixed, we
leave its value open. At this stage, we do not decide whether σ is smaller, a
plausible short-run hypothesis,4 or greater than 1, and we leave it fixed. We
associate a high σ (respectively, low σ) to a moderate (respectively, radical)
environmentalist’s viewpoint, the dividing line being obviously σ = 1.

At this stage, one should give some insights on the qualitative differ-
ences between the cases σ > 1 and σ < 1, i.e., between the opinions we at-
tribute, respectively, to the “moderate” and the “radical” environmentalists.
These differences echo the views that shape the understanding of the fu-
ture long-run usefulness of environmental quality when compared to private
consumption.

First, let us consider σ > 1. We have v(xt , yt ) = xt [1 + ( yt
xt

)
σ−1
σ ]

σ
σ−1 , and

hence, v grows as xt whenever yt
xt

tends to zero. The asymptotic relative con-
tribution of environment to welfare is vanishing, and similarly, the Green
NDP becomes small when compared to standard NDP. As we shall see later,
the moderate environmentalist is very moderate in the long run.

On the contrary, in the case where σ < 1, it is useful to write v(xt , yt ) =
yt [1 + ( yt

xt
)

1−σ
σ ]

σ
σ−1 . In that case, v does not grow any longer indefinitely with

xt , but tends to y (if yt = y for t ≥ 0). The increase in the consumption
of private goods still contributes to welfare but with an asymptotic limit
associated with the level of environmental quality. Standard NDP becomes
small with respect to Green NDP.

4 The marginal willingness for environmental amenities seems to grow faster than private
wealth (see Krutilla and Cicchetti 1972).
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Before turning to the intertemporal social optimum in a Ramsey growth
model, we need to introduce the main concept of this paper, namely, the
ecological discount rate.

2.3. Ecological Discount Rate

2.3.1. Definitions
In order to give some intuition on the question of discount rates, we shall
consider a trajectory of the economy where environmental quality is fixed
at the level y and where the sequence of private goods consumption de-
noted by xt is also given (we will note gt the growth rate implicitly defined by
xt+1 = e gt xt ).

We shall investigate the implicit discount factors at the margin of our
reference trajectory, which is the discount rates that make the reference tra-
jectory locally optimal.

DEFINITION 1: The implicit discount rate for private good between periods t and t + 1
is rt such that

e −rt = e −δ ∂xV (xt+1, y)
∂xV (xt , y)

.

The discount rate between periods 0 and T is then classically defined as

R(T) = 1
T

T−1∑
t=0

rt .

The discount rate R(T) tells us, as is standard, that one unit of consump-
tion at period T is (socially) equivalent to e−R(T)T today.

We then introduce the ecological discount rate, which, as stressed in
Guesnerie (2004), is the discount rate specific to the environmental good.5

DEFINITION 2: The ecological implicit discount rate between two consecutive periods
is βt defined by:

e −β t = e −δ ∂y V (xt+1, y)
∂y V (xt , y)

.

The discount rate between periods 0 and T is

B(T) = 1
T

T−1∑
t=0

βt .

5 Hoel and Sterner (2007) consider the same model as here or as in Guesnerie (2004),
without referring explicitly to the “ecological discount rate.”
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The ecological discount rate tells us that one marginal improvement of
environment at period T is socially equivalent to e −B(T)T of the same im-
provement occurring today. It implies that the present generation, when
viewing an improvement of environment occurring at period T (the im-
provement being, for example, triggered by some present spending), should
compare the present cost with the discounted value (discounted with the
ecological discount rate) of the present marginal willingness to pay for the
same improvement today. (This is what is called “standard” ecological cost-
benefit analysis by Guesnerie 2004).

2.3.2. General Properties
We now provide explicit formulas for the implicit discount rates along any
given trajectory.

PROPOSITION 1: The implicit private discount rate for the private good between
periods tand t + 1 can be equivalently written as either:

rt = δ + gtη + 1 − ση

σ − 1
ln

(
1 + ρt

1 + ρt+1

)

or

rt = δ + gt/σ + 1 − ση

σ − 1
ln

(
1 + ρ−1

t

1 + ρ−1
t+1

)
,

where ρt = yt ∂y V
xt ∂x V = ( xt

yt
)

1
σ
−1 is the ratio of Green NDP over standard NDP .

The first formula shows how the standard logic of discount rates (rt =
δ + gtη) is affected by the environmental concern. The correction depends
upon the evolution of the ratio ρt of Green NDP over standard NDP. The
second formula looks strikingly different from the first one, although it is
equivalent, but it puts emphasis on factors that will turn out to be dominant
when σ < 1.

Now, we can finally relate the ecological discount rate to the interest
rate:

PROPOSITION 2: The ecological discount rate between periods t and t + 1 is
related to the interest rate by

βt = rt − gt/σ.

This last formula stresses the effect of the growth of private consump-
tion on the ecological discount rate: it is qualitatively unsurprising that it
is connected to the standard discount rate with a negative correction that
increases with the growth rate and decreases when the elasticity of substitu-
tion increases. This formula, which captures the relative price effect that we are
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stressing here, is particularly simple and intuitively appealing. We can think
about it as follows: it would be equivalent to give up one unit of environmen-
tal quality at the present period t , in order to provide e βt of environmental
quality tomorrow, but the suggested move is equivalent, from the viewpoint
of both generations, to give up ωt units of private goods (where ωt is the
willingness to pay for environmental amenities) and to provide ωt e rt units, as
soon as ωt e rt compensate for one unit of environmental quality at time t + 1,
which is the case, if and only if ωt e rt = ωt+1e βt . It is straightforward that
ωt+1 = ωt e gt /σ so that ωt e rt = ωt e gt /σ e βt . The conclusion follows and stresses
a key ingredient for the understanding of the argument of the present paper.

3. Optimized Growth: Private Consumption, Ecological
Discount Rates, and Their Evolution

3.1. Introduction

In Guesnerie (2004), asymptotic results for the ecological discount rate were
derived at the margin of any trajectory whether the considered trajectory was
nonoptimal, or optimal either in a first best sense or in a second best sense.
Here, the evolution of ecological discount rates is going to be studied at the
margin of an optimal trajectory that depends on the value of the parameters.
There is indeed a priori no reason to refer to the same growth rate of con-
sumption under different assumptions on σ , since these assumptions reflect
different views (moderate or radical) of the contribution of the environment
to welfare, and then potentially very different views on desirable growth.

In our model, we stick to the option of a fixed environmental quality, but
put emphasis on the endogeneity of private consumption, and we choose the
simplistic endogenous setting of the AK type, where the interest rate r is ex-
ogenous, being then a one-dimensional sufficient statistics of the intertem-
poral production possibilities.6 Hence, as announced in the introduction,
our discussion within the model will focus on four parameters only. A first
one, σ , associated with the ecological concern, a second one, η, linked to the
intertemporal structure of preferences, the third one, δ, associated with “eth-
ical” considerations, and the last one, r , describing economic constraints.

3.2. Optimized Growth and Asymptotic Results

Our viewpoint is normative, and we refer to the intertemporal social welfare
function introduced above. The “social Planner” maximizes:

∞∑
t=0

e −δt V (xt , yt ).

6 Note that such an interest rate r can be extracted from a research arbitrage equation (as in
Aghion et al. (1998)), partly disconnected from the core model.
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Our modeling choice leads the following economic and environmental
constraints:

Economic constraints: αt+1 = e r (αt − xt ), where αt stands for the wealth at
date t .7

Environmental constraints: The environmental quality is limited to y , that
is: yt ≤ y .

We naturally assume that r > δ. Furthermore, in this model, it is easy
to check that optimization would lead to an infinite postponement of con-
sumption if r (1 − η) > δ. We rule this out and assume that η > 1− δ

r . This
means, given the order of magnitude that we have in mind for δ, that we will
consider that η is essentially greater than 1.

This hypothesis on the elasticity of intertemporal substitution goes with
another one that is going to be made in the remaining of this paper, namely,
ησ > 1. Because we suppose that η > 1, this is simply a hypothesis on σ ,
which is supposed not to be too small.8

The next proposition gathers all the asymptotic results of social optimiza-
tion. The first part stresses that optimality requires asymptotically constant
growth whatever the parameters under scrutiny. However, both the asymp-
totic economic growth rates and the long-run ecological discount rates cru-
cially depend on the value of σ and η:

PROPOSITION 3: At the optimum, the private goods consumption grows
asymptotically.

The optimal asymptotic growth rate for the private good x∗
t depends on σ and is

given by the following formulas:

- If σ > 1 then g∗
∞ = r −δ

η
,

- If σ < 1 then g∗
∞ = σ(r − δ).

The asymptotic ecological discount rate, associated with the socially optimal tra-
jectory, is B∗

∞ = limT→+∞ B∗(T) given by the following formulas:

- If σ > 1, then B∗
∞ = (1 − 1

ση
)r + 1

ση
δ.

- If σ < 1, then B∗
∞ = δ.

For σ > 1, the asymptotic growth rate of consumption is r −δ
η

, fitting the
standard formula of the one-good model: the presence of the environmental
good has asymptotically no influence on the growth rate (although it does on

7 A slightly more sophisticated version allows αt+1 = e r [αt − xt + wt ], where αt stands for
the wealth at date t and wt is a possible exogenous production flow that introduces no
binding constraint into the analysis.
8 This last hypothesis is made to simplify and lighten this paper. However, since our con-
clusions are already in favor of voluntarist environmental policy, we believe that focusing
on smaller σ s would add little to the point.
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the optimal trajectory). However, even in this case, the asymptotic ecological
discount rate is always smaller than r .

The result for the other case (σ < 1) may be surprising for two reasons:
first, it was a priori unclear that the “radical” environmentalist would choose
a positive asymptotic growth. The second point is more surprising since the
asymptotic ecological discount rate is totally disconnected from r and is very
low9 since we assume δ to be close to zero.

The opposition between the “radical” environmentalist and the “mod-
erate” one is clearly stressed by the behavior of the ecological discount rate.
The asymptotic difference is again spectacular, as shown if we plot the asymp-
totic ecological interest rate as a function of σ Figure 1.

The asymptotic results stress a discontinuity in the world around
σ = 1. However, the significance of the discontinuity is clarified and quali-
fied by the next result.

PROPOSITION 4: At each period T, the optimal trajectory is a continuous
function of the parameters σ . Subsequently, ∀T < ∞, σ 	→ B∗(T ; σ) is continuous.

In a sense, the discontinuity associated with σ = 1 is worrying and might
be viewed as an objection10 to our (admittedly crude) modeling choice.
The above continuity result, which says that, at any given period, results are

Figure 1: Dependence on σ of the variable B∗∞ when η = 1.5, r = 4%, and δ = 0.1%.

9 In some sense, since we do not consider the negative impact of consumption on the envi-
ronment, we end up with an upper bound on the ecological discount rate. For instance, if
one considers an exogenous exhaustion of the environment at rate g ′, the asymptotic eco-
logical discount rate is B∗

∞ given by δ − ηg ′ if σ < 1 and by (1 − 1
ση

)r + 1
ση

δ − g ′
σ

if σ > 1.

Hence, the effect of the exhaustion is to decrease the ecological discount rate that can
even be negative.
10 Or an appropriate modeling option, since it suggests a possible catastrophic change of
the system.



256 Journal of Public Economic Theory

continuous functions of σ , weakens the objection: the discontinuity “in the
limit” is compatible with continuity “at the limit”: indeed, B∗(T) is a contin-
uous function of σ when T is fixed (and finite), as stated above.

All these results suggest to put the emphasis on the trajectory of discount
rates.

3.3. The Dynamics of Ecological Discount Rates

Here, we are focusing attention on the evolution of ecological discount rates
with time, and what can be called yield curves for ecological discount rates
B∗(T).

Since B∗(T) = r − 1
σ

1
T

∑T−1
t=0 g∗

t , the dynamics of the ecological discount
rate is linked to the dynamics of growth. Indeed, the dynamics of optimal
growth can be assessed here (we still suppose that ση > 1).

PROPOSITION 5: g∗
t converges monotonically toward its limit according to the

following rules:

- If σ < 1 then, g∗
t is increasing .

- If σ > 1, then g∗
t is decreasing.

COROLLARY 1: The shape of the yield curve is the following :

- If σ < 1, then T 	→ B∗(T) is decreasing (respectively, increasing) and converges
toward δ.

- If σ > 1, then T 	→ B∗(T) is increasing (respectively, decreasing) and converges
toward (1 − 1

ση
)r + 1

ση
δ.

To illustrate our proposition, we drew yield curves using a simulation of
the growth path (Figures 2 and 3).

Figure 2: Yield curve example (σ = 0.8, η = 1.5, r = 4%, and δ = 0.1%).
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Figure 3: Yield curve example (σ = 1.2, η = 1.5, r = 4%, and δ = 0.1%).

Two examples are given below:
As it comes from the previous statements, in the first case (σ < 1), the

yield curve is decreasing and converges toward δ. In the second case (σ > 1),
the yield curve is increasing and converges toward (1 − 1

ση
)r + 1

ση
δ.

The figures suggest that ecological discount rates converge slowly to
their asymptotic value. Another interesting and related visual insight is that
when σ is low, the rate is low, but, even when σ is high, because the curve
is increasing, the environmental rate is still low in the medium run. Hence,
what the figures show is that for a time period between one and two centuries from
now, the disagreement between the radical environmentalist and the moderate envi-
ronmentalist is not huge: the first one is between 0.45% and 0.35% and the
second one is between 0.95% and 1.2%. Their willingness to pay, for say a
generation living at date 150 equals the discounted value, with the ecologi-
cal discount rate, respectively, roughly 2/3 and 1/3, multiplied by their own
marginal willingness to pay, which itself depends on their wealth and their
“ecological” views or intuition.

3.4. Environmental Perpetuity

Yield curves provide a key information about the dynamics of ecological dis-
count rates. It should be noted that the conceptually important information
conveyed in Proposition 3 on the limit behavior of discount rates has no clear
operational consequence for cost-benefit analysis (we do not know how long
is the long run). On the contrary, the understanding of the path of con-
vergence stressed in Corollary 1 has an evident bite on the conclusions of
cost-benefit analysis. In what follows, we are going to consider a simple prob-
lem that brings a necessary brick to the understanding of the (less simple)
issues associated with the worldwide debate on the so-called precautionary
principle.
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The problem under scrutiny is the following: consider a damage to the
environment that would take place today and say that in order to avoid this
damage for itself, the present generation is willing to pay x. How much
should it be willing to pay if this damage not only occurs now but is irre-
versible, i.e., if it deteriorates the well-being of all future generations? Let us
call mx the willingness to pay to avoid this damage for all future generations,
instead of x, the willingness to pay when the damage is temporary11) and
only concerns the present generation.

In a sense, avoiding the damage can then be viewed as providing x envi-
ronmental perpetuities (a perpetuity being an infinitely lived environmental
service giving one unit of environmental good at each period). Hence, m is
the “price” to be given to each of these perpetuities.

We provide here a lower bound on m.

PROPOSITION 6: Let us introduce a = r (1 − 1
ση

) + δ 1
ση

.

In the present deterministic context, if the initial generation is willing to pay x in order
to avoid a temporary (here one year) damage, it is willing to pay mx to avoid making
it irreversible, where the number m is greater than 1

a .

The reader will notice that in our admittedly simple world, the result
has a striking simplicity and robustness. First, the lower bound to m is valid
both12 for σ > 1 and for σ < 1. Second, it is also remarkable that the bound
on m does not depend on initial wealth.

Let us note that if the planner neglected the relative price effect
associated with the increase in relative desirability of the environmental
good, the discount rate would be r and m would be approximately 1

r (ap-
proximately because we use an exponential discounting) as for a classical
perpetuity. Hence, the introduction of the environmental good can drasti-
cally change the willingness to pay of the present generation for an environ-
mental perpetuity that protects all future generations from an irreversible
damage. For instance, if we consider that δ � 0, then m is, in our determin-
istic study with ση > 1, greater than the “naive” assessment 1

r , the multiplier
being 1

1− 1
ση

. If we consider the parameters values associated with the above
graphs (η = 1.5), instead of having m � 25 (respectively, m � 50) for r = 4%
(respectively, r = 2%), we get when σ = 0.8, m ≥ 6 × 25 = 150 (respectively,
m ≥ 300) and with σ = 1.2, m ≥ 2.25 × 25 � 56 (respectively, m ≥ 112.5).

Let us now consider the case where the irreversible damage will occur
later in period τ , possibly far away from now. Again, the above question is
meaningful, although m is no longer a priori necessarily greater than one.

11 All these reasonings can easily be adapted to settings in which the life duration of each
generation is T periods.
12 However, the result depends on our hypothesis ση > 1. If ση < 1, then the lower bound
is nothing but 1

δ
which is very high.
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PROPOSITION 7: m > e−aτ 1
a .

The previous proposition told us that a may be viewed as an upper
bound for the discount rate to be used for evaluating “environmental per-
petuities.” It is remarkable that the present proposition tells us that the same
is true, i.e., a can consistently be used to provide a lower bound of the value
of what might be called an “environmental forward perpetuity.”

4. Precautionary Principle: How to Tackle the Uncertainty
about the Elasticity of Substitution σ?

4.1. An Unusual Form of Uncertainty

4.1.1. Introduction
In the preceding paragraphs on environmental perpetuities, we focus on
the desirable action to be taken in order to avoid an “irreversible damage
to the environment.” The so-called precautionary principle, in its most stan-
dard formulations, stresses the uncertainty surrounding a damage: “Where
there are threats of serious or irreversible damage, lack of full scientific certainty shall
not be used as a reason for postponing cost-effective measures to prevent environmental
degradation.” This leaves somewhat open the question of the right intensity
of action. This is the question tackled in this section. It suggests cost-benefit
analysis tools, aimed at evaluating the desirability of precaution in a situation
where uncertainty plays a major role.

In the present framework, we focus attention on an irreversible dam-
age that will take place in the future, and whose harmfulness is now unclear
but will be fully revealed when the damage occurs. Noteworthy, we do not
consider that the damage itself has an uncertain intensity, although this is
clearly the case in reality. Rather, our focus is on its harmfulness. In other
words, we will focus on the uncertain impact of the damage in terms of wel-
fare. Indeed, we believe that, as far as the environmental protection of the
planet and climate change in particular are concerned, an important part of
the uncertainty originates in the extent of the welfare impact of “ecological
accidents” and not only on their intensity.

Formally, we assume that the uncertainty bears on the welfare function
and more precisely on σ : in the first periods, this uncertainty is not resolved
and σ can take two values: σl or σh (σl < 1 < σh)—and we attribute prob-
abilities p and 1 − p to the respective cases. The two values reflect the a
priori viewpoints of what we have called the radical and the moderate en-
vironmentalists. At time τ , an irreversible damage to the environment will
take place (it consists here of a small decrease of y) and the social cost of
the damage will be revealed, i.e., the true value of σ will be known (either
σl or σh). In a sense, the occurrence of the environmental “accident” at time
τ provides an experiment that allows to assess exactly the value of σ . The
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fact that nothing will be learnt between now and τ remains extreme. This
assumption simplifies the analysis, an analysis which remains an unavoidable
reference and a prerequisite to the consideration of progressive accrual of
the information.

4.1.2. The Optimization Problem
As suggested above, let us assume that σ ∈ {σl , σh}, where σl < 1 < σh is
learnt instantaneously at a time τ > 0. The new optimization problem to
determine the consumption path is the following:

τ−1∑
t=0

e −δt [p V (σl ; xt , y) + (1 − p )V (σh ; xt , y)] + pU(ατ , σl )

+ (1 − p )U(ατ , σh),

with α0 given, αt+1 = e r [αt − xt ] and where U(α, σ) = Max(xt )t≥τ∑∞
t=τ e −δt V (σ ; xt , y) is the Bellman function associated with the non-

random problem after we learnt σ . At this time, the deterministic results
provide the required information, given the initial condition which is the
remaining wealth ατ .

The next sections stress that the case σ < 1 should be weighted signif-
icantly in our present decisions, even if it is unlikely. We will present dif-
ferent forms of this result that clearly echo the just discussed precautionary
principle.

4.1.3. A First Result: A Weak Precautionary Principle
The first version of this precautionary principle (the weak precautionary
principle) is an asymptotic statement: the rate to be used to discount envi-
ronmental good is asymptotically the ecological discount rate corresponding
to the smallest σ (i.e., σ = σl < 1). The second and stronger form of precau-
tionary principle bears on the way m depends on p .

The resolution of the above problem is similar to what we have done be-
fore in the deterministic case, at least for the asymptotics. After σ has been
elicited, the two trajectories x∗l

t and x∗h
t , which are identical for t < τ , di-

verge: if σ is equal to σl , the asymptotic growth rate of x∗
t = x∗l

t is g∗
∞ =

σl (r − δ) and if σ is equal to σh , the asymptotic growth rate of x∗
t = x∗h

t is
g∗

∞ = r −δ
η

.
Using these asymptotic results on growth and the formula defin-

ing the ecological discount rate in this context—namely, e −B∗(T)T =
e −δT [ p ∂y V (σl ;x∗l

T ,y)+(1−p )∂y V (σh ;x∗h
T ,y)

p ∂y V (σl ;x∗
0 ,y)+(1−p )∂y V (σh ;x∗

0 ,y) ]—we can deduce the asymptotic value of
the ecological discount rate.

PROPOSITION 8 (Weak Precautionary Principle): Viewed from time zero, the asy-
mptotic ecological discount rate B∗

∞ does not depend on p > 0 and is equal to

B∗
∞ = δ.
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Uncertainty leads us to consider asymptotically the smallest possible eco-
logical rate. This is the counterpart for the “ecological discount rate” of
the limit behavior of discount rates, stressed by Weitzman (2001). This is a
precautionary principle, in the sense that it suggests putting emphasis on the
long-run bad situations even if uncertain. It is weak, since, as argued above,
its operational content for cost-benefit analysis is almost nil. The next section
provides an operational precautionary principle.

4.2. Strong Precautionary Principle

4.2.1. The Question
The question raised here is similar to that raised in a deterministic context:
how much is the present generation willing to pay in order to avoid an irre-
versible damage to the environment that would take place at time τ? How-
ever, and contrary to our deterministic case, the harmfulness of the (fixed)
damage in terms of welfare is not well ascertained.

Our objective is to generalize the previous deterministic results on the
multiplier m, which relates the willingness to pay of the present generation13

to avoid the damage for itself, forgetting about its descendants or viewed as
temporary, to its willingness to pay to avoid the irreversible damage at date τ.

We know the answer in the limit deterministic cases: m has a lower bound
e −aτ 1

a , where a = a(l) = r (1 − 1
σl η

) + δ 1
σl η

if σ is equal to σl , and similarly,

a = a(h) = r (1 − 1
σhη

) + δ 1
σhη

if σ is equal to σh .
What are plausible conjectures on the bounds on the multiplier in the

stochastic case? One may expect m to be bounded from below by an expres-
sion of the form

e −aτ

[
p

1
a(l)

+ (1 − p )
1

a(h)

]
,

where a would neither be a(h) nor a(l) and where the term between bracket
is the expected value of the future damage to the environment as seen from
period τ.

The following proposition shows that the intuitive conjecture is valid
only once the probability of the bad case14 is biased upward. Indeed, this
upward bias is spectacular:

PROPOSITION 9 (Strong Precautionary Principle, first version):
Let us introduce, as in the deterministic case, a(h) = r (1 − 1

σhη
) + δ 1

σhη
, and

similarly, a(l) = r (1 − 1
σl η

) + δ 1
σl η

.

13 Note that, naturally, the willingness to pay of the present generation depends on its
wealth and the true value of σ . In the uncertain case under scrutiny, again, the willing-
ness to pay of the present generation does depend on the plausibility of the two cases, as
measured by p , the probability of being characterized by a low σ .
14 The bad case here, and from now, refers to the case of a low σ (σ = σl < 1).
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In the random case, if p lies in (0, 1), we have

m > e −B∗(τ)τ
[

1
a(l)

(
p N ∗(τ)

p N ∗(τ) + (1 − p )

)
+ 1

a(h)

(
(1 − p )

p N ∗(τ) + (1 − p )

)]
,

where N ∗(τ) > 1 grows exponentially with τ .

The above formula provides information on the bounds on m that,
as desirable, do encompass the information obtained in the deterministic
case. Note, however, that the bound we find here does not only depend,
as in the deterministic case, on the four basic parameters of the models,
but also on the characteristics of the initial situation (in particular, through
N ∗(τ)).

The proof is given in the Appendix, but we may give some insights into
it. The fact that we discount at time 0 the willingness to pay at τ with the
ecological discount rate B∗(τ) is intuitively unsurprising, as well as the con-
sequence of easy algebra. As suggested above, the fact that the (bounds on
the) value of the irreversible damage to the environment, seen from period
τ , when the bad case occurs (respectively, the good case), be proportional
to 1

a(l) (respectively, 1
a(h) ), is, in view of our previous results, intuitive. Now,

concerning the weights to associate to each case, it may be less intuitive that
the ratio of the appropriate corrections to be made to p and 1 − p has to
be the ratio of the marginal utility of the environment in the bad and in the
good cases, which is nothing else that N ∗(τ). The fact that N ∗(τ) increases
with τ , and is unbounded, follows from the examination of the formulas, just
in line with the intuition briefly presented in Section 1.

Hence, the expectation of the deterministic lower bounds stressed in
Proposition 6 (which comes naturally into the picture, as suggested above)
has to be measured with distorted probabilities. Indeed, the probability to
attribute to the bad case with respect to the good case has to be severely
distorted: the later the date, the more weight we put on the bad case, the
weight becoming closer to its limit 1, counteracting the (weak) tendency of
the (ecological) discount rate to dismiss precaution for late damages. Let us
be more explicit on that by considering the following corollary:

COROLLARY 2 (Strong Precautionary Principle, second version): There exists a
function (p , τ) 	→ φ(p , τ), concave with respect to p , verifying :

φ(0, τ) = 1
a(h)

, φ(1, τ) = 1
a(l)

,

dφ

dp
(p = 0, τ) =

(
1

a(l)
− 1

a(h)

)
N ∗(τ) −−−→

τ→+∞
+∞,

dφ

dp
(p = 1, τ) =

(
1

a(l)
− 1

a(h)

)
1

N ∗(τ)
−−−→
τ→+∞

0,
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lim
τ→+∞ φ(p , τ) = 1

a(l)
,∀p > 0

such that

m > e−B∗(τ)τ φ(p , τ).

To well understand the last statements, let us come back to the “plausi-
ble” conjecture discussed at the beginning of the subsection. It was suggested
that m might be the discounted value (with the appropriate discount rate) of
p 1

a(l) + (1 − p ) 1
a(h) . What our analysis says is that if τ is large, and p large, the

intuitive formula tends to be right; but that when p is small, the lower bound
on the multiplier is far from the discounted value of p 1

a(l) + (1 − p ) 1
a(h) and

closer to the discounted value of 1
a(l) . This is a clear and strong form of pre-

cautionary principle. If we do not know whether or not an environmental
accident will lead to real downfall in welfare in the future, here at date 100,
a key element of our computation is, in a sense, to proceed as if the bad case
were to happen for sure.

Let us illustrate the importance of the point with numbers. Suppose that
we are in a world in which the present willingness to pay to avoid the irre-
versible damage from the viewpoint of the sole present generation welfare
is, let us say, 0.1% of its NDP, if the harm is minor in terms of welfare, and
1% if the welfare harm is high. What bounds can we find on its willingness to
pay for avoiding the irreversible accident occurring at period τ = 100? With
the data previously used (r = 4%, δ = 0.1%, η = 1.5, σl = 0.8, σh = 1.2), we
have a(l) = 1/150 and a(h) � 1/56 so that e−a(l)τ � 1/2 and e −a(h)τ � 1/5.9.
Hence, for a small p , say p = 1/10, the intuitive lower bound for the multi-
plier, applying broad linear approximations, is just below 14 (which means
a willingness to pay to avoid the accident of 2.6% of NDP15). Now, with the
bounds given in Proposition 9, the same calculations, assuming that τ is large
enough to apply the approximation, give a lower bound for m equal to 31.5,
i.e., a willingness to pay of around 6% of NDP (more than twice more), and
this for a low probability of the occurrence of the accident . . . For a high
probability accident, the lower bound on the multiplier is 75.

Although they are already large, we leave to the reader to view these
numbers as applying metaphorically to the question of climate change, par-
ticularly in view of the fact that the computed multipliers are even far higher.

Indeed, although an exact solution of the optimization program is un-
tractable analytically, the random case can easily be solved numerically for all
p s. We illustrate our results with the preceding set of parameters in which,
as above, before time τ = 100 (σ is revealed at this time), the agent hesitates
between σh = 1.2 and σl = 0.8 (with probabilities 1 − p and p ). In this sit-
uation, with r = 4%, δ = 0.1%, η = 1.5, we find numerically the ecological
discount rates and compute m for any possible p in [0; 1].

15 Applying once again a rough linear approximation.
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Figure 4: p 	→ m(p).

Figure 4 illustrates in a spectacular way our qualitative statement: the
function p 	→ m(p ) is quickly increasing (and concave). Hence, even for
small p strictly greater than 0, m is far from m(p = 0) and closer to
m(p = 1).

5. Conclusion

The paper proposes a simple model for discussing the long-run issues associ-
ated with environmental quality. The model describes a world with four pa-
rameters that respectively reflect ecological concern, resistance to intertem-
poral substitution, intergenerational altruism, and feasibility constraints.
These parameters are supposed to remain constant over time, an assump-
tion which makes the model tractable and simple, although it is certainly too
extreme. Note that the paper takes a parsimonious defense of the environ-
mentalist viewpoint in the sense that we rule out values of parameters too
much favorable to his views: we assume that growth has no negative effect on
the environment, etc.

The paper shows that long-run environmental policies are crucially
affected by the “ecological view,” in particular but not only, if the radical
viewpoint is adopted. Also, the paper shows that the radical viewpoint on
environment, even when it is unlikely to be true, has, however, bite on the
determination of present policies, a fact that may be viewed as supporting
some form of a precautionary principle. In a companion paper (work in
progress), we will provide back of the envelope computations based on a
variant of the present model to the global warming issue that suggests an
upward reevaluation of the Stern estimates of the merits of action.

Let us repeat that our simple setting allows to focus both on the rela-
tive price effect and the uncertainty dimension of the economic appraisal
of ecological intuition. To put it in a nutshell, the paper stresses that the
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“economic” argument, along which we should not sacrifice the present gen-
erations’ welfare to the welfare of our descendants that will be wealthier than
us, is valid here, but has to be strongly qualified. There is a most valuable gift
that is worth transmitting to our descendants, because it may be very impor-
tant for them, although this is not sure. That gift is a good environment.

Appendix

Proof of Proposition 1: The implicit discount rate rt for private goods between
periods t and t + 1 is uniquely defined by

e −rt = e −δ
∂xV (xt+1, y)
∂xV (xt , y)

= e −δ

(
xt+1

xt

)− 1
σ

(
xt+1

σ−1
σ + y

σ−1
σ

xt
σ−1
σ + y

σ−1
σ

) 1−ση

σ−1

.

Taking logarithms, this gives

rt = δ + gt/σ − 1 − ση

σ − 1
ln

(
xt+1

σ−1
σ + y

σ−1
σ

xt
σ−1
σ + y

σ−1
σ

)

= δ + gt/σ + 1 − ση

σ − 1
ln

(
1 + ρ−1

t

1 + ρ−1
t+1

)
.

This is the second formula of Proposition 1. The first formula can be
obtained by the same reasoning:

rt = δ + gt/σ − 1 − ση

σ − 1
ln

⎡
⎢⎢⎢⎣

(
xt+1

xt

) σ−1
σ

1 +
(

y
xt+1

) σ−1
σ

1 +
(

y
xt

) σ−1
σ

⎤
⎥⎥⎥⎦

= δ + gtη + 1 − ση

σ − 1
ln

(
1 + ρt

1 + ρt+1

)
.

�
Proof of Proposition 2: We have e −βt = e −δ (∂y V )t+1

(∂yV )t
= e −δ (∂x V )t+1

(∂x V )t
( xt+1

xt
)1/σ =

e −rt e gt /σ , and hence, βt = rt − gt/σ . �

Proof of Proposition 3: We consider the Lagrangian of the problem L =∑∞
t=0 exp(−δt)[V (xt , yt ) + λt (e r [αt − xt ] − αt+1) + μt (y − yt )].

The first-order conditions are the following:⎧⎪⎪⎨
⎪⎪⎩

∂xtL = 0 ⇐⇒ ∂xV (x∗
t , y ∗

t ) = e r λt ,

∂αt+1L = 0 ⇐⇒ λt+1 exp(r − δ) = λt ,

∂ytL = 0 ⇐⇒ ∂y V (x∗
t , y ∗

t ) = μt .
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The first thing to note is that y ∗
t = y . Then, since r > δ, λt and ∂xV (x∗

t , y)
are both decreasing and tend to zero. The natural consequence is that the
consumption of the private good x∗

t grows and tends to +∞ .
The growth path x∗

t is then characterized by x∗
t

− 1
σ [x∗

t
σ−1
σ + y

σ−1
σ ]

1−ση

σ−1 =
∂xV (x∗

t , y) = e r λt = λ0e r

exp((r −δ)t) .

• In the σ > 1 case, x∗
t

−η ∼∞ λ0e r

exp((r −δ)t) . Hence, the asymptotic growth
rate is the same as if there were no consideration of the environmental
good g∗

∞ = r −δ
η

.

• In the σ < 1 case, x∗
t

− 1
σ ∼∞ λ0e r

y
1
σ −η exp((r −δ)t)

. Hence, the growth rate in

that case is given by g∗
∞ = σ(r − δ).

The results on the ecological discount rate then follow from
Proposition 2. �

Proof of Proposition 4: (This proof can be omitted at first reading.) It is very im-
portant here to consider v(x, y) = [ 1

2 x
σ−1
σ + 1

2 y
σ−1
σ ]

σ
σ−1 with the weights 1

2 to

extend the function properly and also to remind that V = v1−σ ′−1
1−σ ′ . Obviously,

it does not change anything to our preceding results since these changes
only consist in additive or multiplicative scalar adjustment.

We have βt = r − g∗
t

σ
, and thus B∗(T) = r − 1

σ
1
T ln( x∗

T
x∗

0
).

Therefore, the only thing to prove is that ∀t, x∗
t is a continuous function

of σ . But we know that the growth path is defined by the first-order condition
∂xV (x∗

t ; σ) = λ0e r

exp((r −δ)t) , where we omitted the reference to y here since we
focus on σ . Then, it is easy to see that the only two things we need to prove
are that

• The Lagrange multiplier λ0 is a continuous function of σ .

• The function h(ξ, σ) implicitly defined by ∂xV (g(ξ, σ); σ) = ξ is con-
tinuous.

The second point is easy. Notice first that the function (x, σ) 	→ V (x; σ)
can be extended to a C2 function (the proof is easy). Then, by the im-
plicit function theorem, h(ξ, σ) is a C1 function ((ξ, σ) ∈ (R+∗)2). There-
fore, the only thing to prove is that the first Lagrange multiplier λ0 is
a continuous function of σ . Let us recall that λ0 is defined by the re-
sources constraint

∑∞
t=0 x∗

t e −r t = ∑∞
t=0 h(λ0e r exp((δ − r )t), σ)e −r t = α0 +∑∞

t=0 wt e −r t (:= �∞16).
Here, we cannot apply directly the implicit function theorem to the left-

hand side. However, if we consider the restricted optimization problem with
a fixed time horizon T ,17 then the associated Lagrange multiplier (λT

0 ) is

16 This quantity is supposed finite for the problem to have a solution.
17 Max

∑T
t=0 exp(−ρt)u(xt , y) s.t. αt+1 = e r [αt + wt − xt ].
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implicitly defined by

T∑
t=0

h
(
λT

0 exp((δ − r )t), σ
)
e −r t = α0 +

T∑
t=0

wt e −r t (:= �T ),

and the implicit function theorem applies: λT
0 is a C1 function of σ .

Now, we can approximate λ0 by λT
0 and this gives: |λ0(σ) − λ0(σ̃)| ≤

|λ0(σ) − λT
0 (σ)| + |λT

0 (σ) − λT
0 (σ̃)| + |λT

0 (σ̃) − λ0(σ̃)|.
Hence, we see that the only thing to prove is a pointwise convergence in

the sense that for σ fixed, we have a convergence of λT
0 (σ) toward λ0(σ)

as T → ∞ . To prove that let us introduce FT : z 	→ ∑T
t=0 h(ze r exp((δ −

r )t), σ)e −r t , and similarly, F : z 	→ ∑∞
t=0 h(ze r exp((δ − r )t), σ)e −r t . These

two functions are positive and decreasing because h is a positive and de-
creasing function of ξ . Moreover, FT is continuous and there is a pointwise
convergence of FT toward F . By monotony, FT converges toward F uniformly
on every compact set, and therefore, F is a continuous function and so is the
inverse of the function F .

By the second Dini’s theorem then, the inverse of the function FT con-
verges uniformly on every compact set toward the inverse of the function F .

But λT
0 − λ0 = F −1

T (�T ) − F −1(�∞), and hence, since �T → �∞, we are
done with the proof. �

Proof of Proposition 5: Let us go back the first-order conditions that define
the growth path. We have ∂xV (x∗

t , y) = e r −δ∂xV (x∗
t e g∗

t , y).
Therefore, the growth rate g , as a function of x, is defined implicitly by

(we now omit the y terms) V ′(x) exp(r − δ) =V ′(xe g(x)).
Taking logs and deriving, we get V ′′(x)

V ′(x) = V ′′(xe g(x))
V ′(xe g(x)) e g(x)(1 + g ′(x)x).

Hence, the sign of g ′(x) is the sign of V ′(x)V ′′(xe g(x))e g(x) −
V ′(xe g(x))V ′′(x). This sign is simply the sign of d

dx
V ′(xe g )
V ′(x) , where g is

now an independent variable. The latter expression can be written as

e −g/σ d
dx [ y+(xe g )

σ
σ−1

y+x
σ

σ−1
]

1−ση

σ−1 .

The sign of this derivative is the sign of 1−ση

σ−1
σ−1
σ

(e g σ−1
σ − 1) =

1−ση

σ
(e g σ−1

σ − 1).
Since g > 0 in our context, this expression has the same sign as 1 − σ

and this proves our result. �

Proof of Proposition 6 : By definition, m is equal to
∑∞

T=0 exp(−B∗(T)T).
Since we want to find a lower bound for m, we need to find an upper bound
for B∗(T).

The ecological rate B∗(T) can be written as B∗(T) = r −
1

σT

∑T−1
t=0 g∗

t . Hence, the problem boils down to find a lower bound
for g∗

t .
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Now, from Proposition 1, we know that a lower bound to g∗
t is r −δ

η
so that

B∗(T) ≤ a.
This gives m =∑∞

T=0 exp(−B∗(T)T)≥∑∞
T=0 exp(−aT)= 1

1−exp(−a) ≥ 1
a .

�

Proof of Proposition 7 : By definition, m is now equal to
∑∞

T=τ exp(−B∗(T)T).
Using the same inequality as before, we have m ≥ ∑∞

T=τ exp(−aT) =
exp(−aτ)

1−exp(−a) ≥ e −aτ 1
a . �

Proof of Proposition 8: Let us consider T > τ and let us recall first the defini-
tion of B∗(T) in this context:

B∗(T) = δ − 1
T

ln

[
p ∂y V

(
σl ; x∗l

T , y
) + (1 − p )∂y V

(
σh ; x∗h

T , y
)

p ∂y V
(
σl ; x∗l

0 , y
) + (1 − p )∂y V

(
σh ; x∗h

0 , y
)
]

.

To prove our result, it is sufficient to prove that the expression in the
logarithm remains bounded as T increases. Hence, we are going to prove
that the following expression is bounded:

p y− 1
σl

[
x∗l

T

σl −1
σl + y

σl −1
σl

] 1−σl η
σl −1

+ (1 − p )y− 1
σh

[
x∗h

T

σh −1
σh + y

σh −1
σh

] 1−σh η

σh −1

.

The first part of the expression converges toward p y−η and is therefore
bounded.

For the second part of the expression, x∗h
T

σh −1
σh + y

σh −1
σh → ∞ so that, since

1−σhη

σh−1 < 0 (we supposed σhη > 1), the second part of the expression tends
toward 0 and this proves the result. �

Proof of Proposition 9 : For T ≥ τ , we have by definition exp (−B∗(T)T) =
exp (−δT)[ p ∂y V (σl ;x∗l

T ,y)+(1−p )∂y V (σh ;x∗h
T ,y)

p ∂y V (σl ;x∗
0 ,y)+(1−p )∂y V (σh ;x∗

0 ,y) ].
We are going to separate the reasoning into two parts to factor out what

happens after time τ on the two different trajectories. We have

exp (−B∗(T)T) = pe−δ(T−τ)

[
∂y V

(
σl ; x∗l

T , y
)

∂y V
(
σl ; x∗l

τ , y
)
]

× e−δτ

[
∂y V

(
σl ; x∗l

τ , y
)

p ∂y V (σl ; x∗
0 , y) + (1 − p )∂y V (σh ; x∗

0 , y)

]

+ (1 − p )e −δ(T−τ)

[
∂y V

(
σh ; x∗h

T , y
)

∂y V
(
σh ; x∗h

τ , y
)
]

× e−δτ

[
∂y V

(
σh ; x∗h

τ , y
)

p ∂y V (σl ; x∗
0 , y) + (1 − p )∂y V (σh ; x∗

0 , y)

]
.
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The terms e −δ(T−τ)[ ∂y V (σl ;x∗l
T ,y)

∂y V (σl ;x∗l
τ ,y) ] and e −δ(T−τ)[(1 − p ) ∂y V (σh ;x∗h

T ,y)
∂y V (σh ;x∗h

τ ,y) ] can easily
be controlled using what we know from the deterministic cases: they are,
respectively, greater than e −a(l)(T−τ) and e −a(h)(T−τ).

The other terms correspond to what happens before time τ and we
would like to link them to the ecological discount rate B∗(τ).

Let us take first the term corresponding to the “l -trajectory”:

e −δτ

[
∂y V

(
σl ; x∗l

τ , y
)

p ∂y V (σl ; x∗
0 , y) + (1 − p )∂y V (σh ; x∗

0 , y)

]

= e−δτ

(
p ∂y V

(
σl ; x∗l

τ , y
) + (1 − p )∂y V

(
σh ; x∗h

τ , y
)

p ∂y V (σl ; x∗
0 , y) + (1 − p )∂y V (σh ; x∗

0 , y)

)

×
(

∂y V
(
σl ; x∗l

τ , y
)

p ∂y V
(
σl ; x∗l

τ , y
) + (1 − p )∂y V

(
σh ; x∗h

τ , y
)
)

= e−B∗(τ)τ

[
∂y V

(
σl ; x∗l

τ , y
)

p ∂y V
(
σl ; x∗l

τ , y
) + (1 − p )∂y V

(
σh ; x∗h

τ , y
)
]

= e−B∗(τ)τ

∂y V
(
σl ; x∗l

τ , y
)

∂y V
(
σh ; x∗h

τ , y
)

p
∂y V

(
σl ; x∗l

τ , y
)

∂y V
(
σh ; x∗h

τ , y
) + (1 − p )

.

Now, let us turn to the term corresponding to the “h-trajectory”:

e−δτ

[
∂y V

(
σh ; x∗h

τ , y
)

p ∂y V (σl ; x∗
0 , y) + (1 − p )∂y V (σh ; x∗

0 , y)

]

=
(

∂y V
(
σh ; x∗h

τ , y
)

p ∂y V
(
σl ; x∗l

τ , y
) + (1 − p )∂y V

(
σh ; x∗h

τ , y
)
)

× e−δτ

(
p ∂y V

(
σl ; x∗l

τ , y
) + (1 − p )∂y V

(
σh ; x∗h

τ , y
)

p ∂y V
(
σl ; x∗

0 , y
) + (1 − p )∂y V

(
σh ; x∗

0 , y
)

)
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=
[

∂y V
(
σh ; x∗h

τ , y
)

p ∂y V
(
σl ; x∗l

τ , y
) + (1 − p )∂y V

(
σh ; x∗h

τ , y
)
]

× e −B∗(τ)τ = e −B∗(τ)τ 1

p
∂y V

(
σl ; x∗l

τ , y
)

∂y V
(
σh ; x∗h

τ , y
) + (1 − p )

.

Now, if we compile all the inequalities, we obtain

e−B∗(T)T > e −B∗(τ)τ

[
pe−a(l)(T−τ)

(
N ∗(τ)

pN ∗(τ) + (1 − p )

)

+ (1 − p )e −a(h)(T−τ)

(
1

pN ∗(τ) + (1 − p )

)]
,

where N ∗(τ) stands for ∂y V (σl ;x∗l
τ ,y)

∂y V (σh ;x∗h
τ ,y) .

If we sum everything, we get

m > e −B∗(τ)τ

[
p

1
a(l)

(
N ∗(τ)

pN ∗(τ) + (1 − p )

)

+ (1 − p )
1

a(h)

(
1

pN ∗(τ) + (1 − p )

)]
.

We see that one thing remains to be done: studying N ∗(τ).
We can write

N ∗(τ) = ∂y V (σl ; x∗l
τ , y)

∂y V
(
σh ; x∗h

τ , y
)

=
[

y− 1
σl

[
x∗l

τ

σl −1
σl + y

σl −1
σl

] 1−σl η
σl −1

]/[
y− 1

σh

[
x∗h

τ

σh −1
σh + y

σh −1
σh

] 1−σh η

σh −1

]

=
⎡
⎣y−η

[
1 +

(
x∗l

τ

y

) σl −1
σl

] 1−σl η
σl −1

⎤
⎦ /⎡

⎣y−η

[
1 +

(
x∗h

τ

y

) σh −1
σh

] 1−σh η

σh −1

⎤
⎦

=
[

1 +
(

x∗l
τ

y

) σl −1
σl

] 1−σl η
σl −1

/[
1 +

(
x∗h

τ

y

) σh −1
σh

] 1−σh η

σh −1

.

It is clear that this expression grows exponentially with τ(since σhη > 1).
Also, under our hypotheses, this expression is always greater

than 1 because we divide a term greater than 1 by a term smaller
than 1. �
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Proof of Corollary 2: From Proposition 9, we see that the only thing to prove
is that the function

p 	→ p
1

a(l)

(
N ∗(τ)

p N ∗(τ) + (1 − p )

)
+ (1 − p )

1
a(h)

(
1

p N ∗(τ) + (1 − p )

)

lies above its chord [(p = 0, 1
a(h) ), (p = 1, 1

a(l) )].
This is guaranteed since N ∗(τ) is greater than 1 (see

Proposition 9). �
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